(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)
The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active
Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
top(ok(X)) → top(active(X))
proper(nil) → ok(nil)
proper(tt) → ok(tt)
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isPal(ok(X)) → ok(isPal(X))
isNePal(ok(X)) → ok(isNePal(X))
and(mark(X1), X2) → mark(and(X1, X2))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
__(mark(X1), X2) → mark(__(X1, X2))
proper(a) → ok(a)
proper(i) → ok(i)
and(ok(X1), ok(X2)) → ok(and(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
proper(o) → ok(o)
proper(u) → ok(u)
top(mark(X)) → top(proper(X))
proper(e) → ok(e)
isList(ok(X)) → ok(isList(X))
Rewrite Strategy: INNERMOST
(3) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5, 6, 7, 8, 9]
transitions:
ok0(0) → 0
active0(0) → 0
nil0() → 0
tt0() → 0
mark0(0) → 0
a0() → 0
i0() → 0
o0() → 0
u0() → 0
e0() → 0
top0(0) → 1
proper0(0) → 2
isNeList0(0) → 3
isQid0(0) → 4
isPal0(0) → 5
isNePal0(0) → 6
and0(0, 0) → 7
__0(0, 0) → 8
isList0(0) → 9
active1(0) → 10
top1(10) → 1
nil1() → 11
ok1(11) → 2
tt1() → 12
ok1(12) → 2
isNeList1(0) → 13
ok1(13) → 3
isQid1(0) → 14
ok1(14) → 4
isPal1(0) → 15
ok1(15) → 5
isNePal1(0) → 16
ok1(16) → 6
and1(0, 0) → 17
mark1(17) → 7
__1(0, 0) → 18
ok1(18) → 8
__1(0, 0) → 19
mark1(19) → 8
a1() → 20
ok1(20) → 2
i1() → 21
ok1(21) → 2
and1(0, 0) → 22
ok1(22) → 7
o1() → 23
ok1(23) → 2
u1() → 24
ok1(24) → 2
proper1(0) → 25
top1(25) → 1
e1() → 26
ok1(26) → 2
isList1(0) → 27
ok1(27) → 9
ok1(11) → 25
ok1(12) → 25
ok1(13) → 13
ok1(14) → 14
ok1(15) → 15
ok1(16) → 16
mark1(17) → 17
mark1(17) → 22
ok1(18) → 18
ok1(18) → 19
mark1(19) → 18
mark1(19) → 19
ok1(20) → 25
ok1(21) → 25
ok1(22) → 17
ok1(22) → 22
ok1(23) → 25
ok1(24) → 25
ok1(26) → 25
ok1(27) → 27
active2(11) → 28
top2(28) → 1
active2(12) → 28
active2(20) → 28
active2(21) → 28
active2(23) → 28
active2(24) → 28
active2(26) → 28
(4) BOUNDS(1, n^1)
(5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(nil) → ok(nil)
proper(tt) → ok(tt)
proper(a) → ok(a)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
proper(e) → ok(e)
isNeList(ok(z0)) → ok(isNeList(z0))
isQid(ok(z0)) → ok(isQid(z0))
isPal(ok(z0)) → ok(isPal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
isList(ok(z0)) → ok(isList(z0))
Tuples:
TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
PROPER(nil) → c2
PROPER(tt) → c3
PROPER(a) → c4
PROPER(i) → c5
PROPER(o) → c6
PROPER(u) → c7
PROPER(e) → c8
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
S tuples:
TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
PROPER(nil) → c2
PROPER(tt) → c3
PROPER(a) → c4
PROPER(i) → c5
PROPER(o) → c6
PROPER(u) → c7
PROPER(e) → c8
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
K tuples:none
Defined Rule Symbols:
top, proper, isNeList, isQid, isPal, isNePal, and, __, isList
Defined Pair Symbols:
TOP, PROPER, ISNELIST, ISQID, ISPAL, ISNEPAL, AND, __', ISLIST
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18
(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 8 trailing nodes:
PROPER(u) → c7
PROPER(o) → c6
PROPER(e) → c8
PROPER(i) → c5
PROPER(a) → c4
PROPER(nil) → c2
PROPER(tt) → c3
TOP(ok(z0)) → c(TOP(active(z0)))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(nil) → ok(nil)
proper(tt) → ok(tt)
proper(a) → ok(a)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
proper(e) → ok(e)
isNeList(ok(z0)) → ok(isNeList(z0))
isQid(ok(z0)) → ok(isQid(z0))
isPal(ok(z0)) → ok(isPal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
isList(ok(z0)) → ok(isList(z0))
Tuples:
TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
S tuples:
TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
K tuples:none
Defined Rule Symbols:
top, proper, isNeList, isQid, isPal, isNePal, and, __, isList
Defined Pair Symbols:
TOP, ISNELIST, ISQID, ISPAL, ISNEPAL, AND, __', ISLIST
Compound Symbols:
c1, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18
(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(nil) → ok(nil)
proper(tt) → ok(tt)
proper(a) → ok(a)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
proper(e) → ok(e)
isNeList(ok(z0)) → ok(isNeList(z0))
isQid(ok(z0)) → ok(isQid(z0))
isPal(ok(z0)) → ok(isPal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
isList(ok(z0)) → ok(isList(z0))
Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:
top, proper, isNeList, isQid, isPal, isNePal, and, __, isList
Defined Pair Symbols:
ISNELIST, ISQID, ISPAL, ISNEPAL, AND, __', ISLIST, TOP
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1
(11) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
isNeList(ok(z0)) → ok(isNeList(z0))
isQid(ok(z0)) → ok(isQid(z0))
isPal(ok(z0)) → ok(isPal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
isList(ok(z0)) → ok(isList(z0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(nil) → ok(nil)
proper(tt) → ok(tt)
proper(a) → ok(a)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
proper(e) → ok(e)
Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:
proper
Defined Pair Symbols:
ISNELIST, ISQID, ISPAL, ISNEPAL, AND, __', ISLIST, TOP
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(z0)) → c1(TOP(proper(z0)))
We considered the (Usable) Rules:
proper(nil) → ok(nil)
proper(tt) → ok(tt)
proper(o) → ok(o)
proper(u) → ok(u)
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
And the Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = 0
POL(ISLIST(x1)) = 0
POL(ISNELIST(x1)) = 0
POL(ISNEPAL(x1)) = 0
POL(ISPAL(x1)) = 0
POL(ISQID(x1)) = 0
POL(TOP(x1)) = x1
POL(__'(x1, x2)) = 0
POL(a) = 0
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c9(x1)) = x1
POL(e) = 0
POL(i) = 0
POL(mark(x1)) = [1] + x1
POL(nil) = 0
POL(o) = 0
POL(ok(x1)) = 0
POL(proper(x1)) = 0
POL(tt) = 0
POL(u) = 0
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(nil) → ok(nil)
proper(tt) → ok(tt)
proper(a) → ok(a)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
proper(e) → ok(e)
Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
K tuples:
TOP(mark(z0)) → c1(TOP(proper(z0)))
Defined Rule Symbols:
proper
Defined Pair Symbols:
ISNELIST, ISQID, ISPAL, ISNEPAL, AND, __', ISLIST, TOP
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = x2
POL(ISLIST(x1)) = 0
POL(ISNELIST(x1)) = 0
POL(ISNEPAL(x1)) = 0
POL(ISPAL(x1)) = 0
POL(ISQID(x1)) = 0
POL(TOP(x1)) = 0
POL(__'(x1, x2)) = 0
POL(a) = 0
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c9(x1)) = x1
POL(e) = 0
POL(i) = 0
POL(mark(x1)) = 0
POL(nil) = 0
POL(o) = 0
POL(ok(x1)) = [1] + x1
POL(proper(x1)) = 0
POL(tt) = 0
POL(u) = 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(nil) → ok(nil)
proper(tt) → ok(tt)
proper(a) → ok(a)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
proper(e) → ok(e)
Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
K tuples:
TOP(mark(z0)) → c1(TOP(proper(z0)))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
Defined Rule Symbols:
proper
Defined Pair Symbols:
ISNELIST, ISQID, ISPAL, ISNEPAL, AND, __', ISLIST, TOP
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
AND(mark(z0), z1) → c13(AND(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = x1
POL(ISLIST(x1)) = 0
POL(ISNELIST(x1)) = 0
POL(ISNEPAL(x1)) = 0
POL(ISPAL(x1)) = 0
POL(ISQID(x1)) = 0
POL(TOP(x1)) = 0
POL(__'(x1, x2)) = x2
POL(a) = 0
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c9(x1)) = x1
POL(e) = 0
POL(i) = 0
POL(mark(x1)) = [1] + x1
POL(nil) = 0
POL(o) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = 0
POL(tt) = 0
POL(u) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(nil) → ok(nil)
proper(tt) → ok(tt)
proper(a) → ok(a)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
proper(e) → ok(e)
Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
K tuples:
TOP(mark(z0)) → c1(TOP(proper(z0)))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
AND(mark(z0), z1) → c13(AND(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
Defined Rule Symbols:
proper
Defined Pair Symbols:
ISNELIST, ISQID, ISPAL, ISNEPAL, AND, __', ISLIST, TOP
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1
(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
We considered the (Usable) Rules:none
And the Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = x1 + [2]x2
POL(ISLIST(x1)) = [2]x1
POL(ISNELIST(x1)) = 0
POL(ISNEPAL(x1)) = 0
POL(ISPAL(x1)) = x1
POL(ISQID(x1)) = x1
POL(TOP(x1)) = 0
POL(__'(x1, x2)) = x1
POL(a) = 0
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c9(x1)) = x1
POL(e) = [1]
POL(i) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(o) = 0
POL(ok(x1)) = [1] + x1
POL(proper(x1)) = [1] + [2]x1
POL(tt) = 0
POL(u) = [2]
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(nil) → ok(nil)
proper(tt) → ok(tt)
proper(a) → ok(a)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
proper(e) → ok(e)
Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
__'(mark(z0), z1) → c16(__'(z0, z1))
K tuples:
TOP(mark(z0)) → c1(TOP(proper(z0)))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
AND(mark(z0), z1) → c13(AND(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
Defined Rule Symbols:
proper
Defined Pair Symbols:
ISNELIST, ISQID, ISPAL, ISNEPAL, AND, __', ISLIST, TOP
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1
(21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
We considered the (Usable) Rules:none
And the Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = 0
POL(ISLIST(x1)) = 0
POL(ISNELIST(x1)) = 0
POL(ISNEPAL(x1)) = [2]x1
POL(ISPAL(x1)) = 0
POL(ISQID(x1)) = 0
POL(TOP(x1)) = 0
POL(__'(x1, x2)) = 0
POL(a) = 0
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c9(x1)) = x1
POL(e) = 0
POL(i) = 0
POL(mark(x1)) = 0
POL(nil) = 0
POL(o) = 0
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = 0
POL(tt) = 0
POL(u) = 0
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(nil) → ok(nil)
proper(tt) → ok(tt)
proper(a) → ok(a)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
proper(e) → ok(e)
Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
__'(mark(z0), z1) → c16(__'(z0, z1))
K tuples:
TOP(mark(z0)) → c1(TOP(proper(z0)))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
AND(mark(z0), z1) → c13(AND(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
Defined Rule Symbols:
proper
Defined Pair Symbols:
ISNELIST, ISQID, ISPAL, ISNEPAL, AND, __', ISLIST, TOP
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1
(23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
We considered the (Usable) Rules:none
And the Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = 0
POL(ISLIST(x1)) = 0
POL(ISNELIST(x1)) = x1
POL(ISNEPAL(x1)) = 0
POL(ISPAL(x1)) = 0
POL(ISQID(x1)) = 0
POL(TOP(x1)) = 0
POL(__'(x1, x2)) = 0
POL(a) = 0
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c9(x1)) = x1
POL(e) = 0
POL(i) = 0
POL(mark(x1)) = 0
POL(nil) = 0
POL(o) = 0
POL(ok(x1)) = [1] + x1
POL(proper(x1)) = 0
POL(tt) = 0
POL(u) = 0
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(nil) → ok(nil)
proper(tt) → ok(tt)
proper(a) → ok(a)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
proper(e) → ok(e)
Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:
__'(mark(z0), z1) → c16(__'(z0, z1))
K tuples:
TOP(mark(z0)) → c1(TOP(proper(z0)))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
AND(mark(z0), z1) → c13(AND(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
Defined Rule Symbols:
proper
Defined Pair Symbols:
ISNELIST, ISQID, ISPAL, ISNEPAL, AND, __', ISLIST, TOP
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1
(25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
__'(mark(z0), z1) → c16(__'(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = 0
POL(ISLIST(x1)) = 0
POL(ISNELIST(x1)) = [2]x1
POL(ISNEPAL(x1)) = [2]x1
POL(ISPAL(x1)) = 0
POL(ISQID(x1)) = 0
POL(TOP(x1)) = 0
POL(__'(x1, x2)) = [2]x1 + x2
POL(a) = 0
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c9(x1)) = x1
POL(e) = 0
POL(i) = [3]
POL(mark(x1)) = [1] + x1
POL(nil) = [2]
POL(o) = [1]
POL(ok(x1)) = x1
POL(proper(x1)) = [2]x1
POL(tt) = 0
POL(u) = [2]
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(nil) → ok(nil)
proper(tt) → ok(tt)
proper(a) → ok(a)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
proper(e) → ok(e)
Tuples:
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
AND(mark(z0), z1) → c13(AND(z0, z1))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
__'(mark(z0), z1) → c16(__'(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:none
K tuples:
TOP(mark(z0)) → c1(TOP(proper(z0)))
AND(ok(z0), ok(z1)) → c14(AND(z0, z1))
AND(mark(z0), z1) → c13(AND(z0, z1))
__'(z0, mark(z1)) → c17(__'(z0, z1))
ISQID(ok(z0)) → c10(ISQID(z0))
ISPAL(ok(z0)) → c11(ISPAL(z0))
__'(ok(z0), ok(z1)) → c15(__'(z0, z1))
ISLIST(ok(z0)) → c18(ISLIST(z0))
ISNEPAL(ok(z0)) → c12(ISNEPAL(z0))
ISNELIST(ok(z0)) → c9(ISNELIST(z0))
__'(mark(z0), z1) → c16(__'(z0, z1))
Defined Rule Symbols:
proper
Defined Pair Symbols:
ISNELIST, ISQID, ISPAL, ISNEPAL, AND, __', ISLIST, TOP
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1
(27) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(28) BOUNDS(1, 1)